
RS30N100D

i ackage marking	and ordering	Information			
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
RS30N100D	RS30N100D	TO-252	325mm	16mm	2500

Table 1. Absolute Maximum Ratings (T_A=25℃)

Symbol	Parameter	Value	Unit
Vds	Drain-Source Voltage (VGS=0V)	30	V
Vgs	Gate-Source Voltage (VDs=0V)	±20	V
1	Drain Current-Continuous(Tc=25°C)	100	А
Ι _D	Drain Current-Continuous(Tc=100°C)	70	A
DM (pluse)	Drain Current-Continuous@ Current-Pulsed (Note 1)	400	А
D	Maximum Power Dissipation(Tc=25°C)	88	w
PD	Maximum Power Dissipation(Tc=100°C)	44	W
Eas	Avalanche energy (Note 2)	150	mJ
TJ,Tstg	Operating Junction and Storage Temperature Range	-55 To 175	°C

Notes 2.EAs condition: $T_J=25^{\circ}C$, VDD=20V, V_G=10V, RG=25 Ω

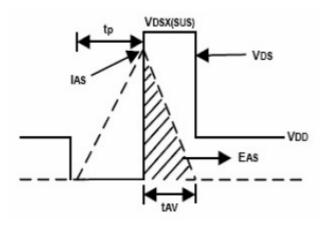
Table 2. Thermal Characteristic

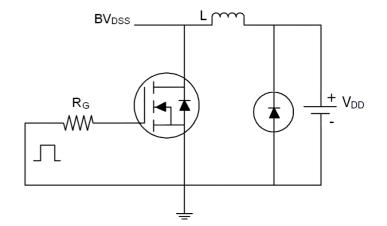
5	Symbol	Parameter	Тур	Max	Unit
	Rejc	Thermal Resistance, Junction-to-Case	-	1.7	°C/W

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
On/Off Stat	tes					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V I _D =250µA	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V,V _{GS} =0V			1	μA
I _{GSS}	Gate-Body Leakage Current	V _{GS} =±20V,V _{DS} =0V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} ,I _D =250µA	1	1.5	2.5	V
g fs	Forward Transconductance	V _{DS} =5V,I _D =15A		30		S
Rds(on)	Drain-Source On-State Resistance	V _{GS} =10V, I _D =20A		4.3	5.5	mΩ
TOS(ON)		V _{GS} =4.5V, I _D =15A		6.4	10	mΩ
Dynamic C	haracteristics					
Ciss	Input Capacitance			2600		pF
Coss	Output Capacitance	V _{DS} =15V,V _{GS} =0V, f=1.0MHz		412		pF
Crss	Reverse Transfer Capacitance			300		pF
Rg	Gate resistance	V _{GS} =0V, V _{DS} =0V,f=1.0MHz		3.3		Ω
Switching	Times		-	1		
t _{d(on)}	Turn-on Delay Time			13		nS
tr	Turn-on Rise Time	VGS=10V, VDS=15V,		16		nS
$t_{d(off)}$	Turn-Off Delay Time	RL=0.75Ω,RGEN=3Ω		40		nS
t _f	Turn-Off Fall Time			14		nS
Qg	Total Gate Charge			58		nC
Q _{gs}	Gate-Source Charge	Vgs=10V, Vds=15V, Id=14A		7		nC
	Gate-Drain Charge			18		nC

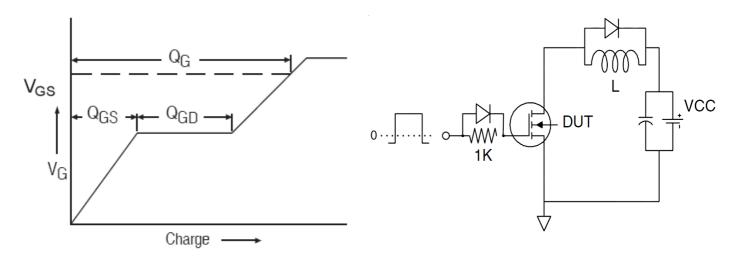
Table

100 Source-Drain Current(Body Diode) Isd Forward on Voltage^(Note 1) VGs=0V,Is=20A 1.2 V_{SD}

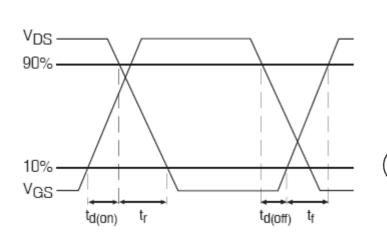

Notes 1. Repetitive Rating: Pulse width limited by maximum junction temperature.

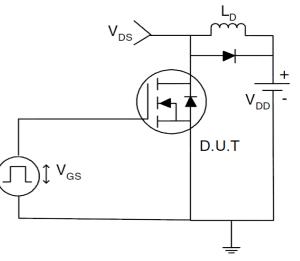

А

V


Test Circuit

1) E_{AS} Test Circuits





2) Gate Charge Test Circuit:

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS (Curves)

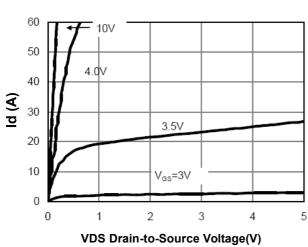


Figure 1. Output Characteristics

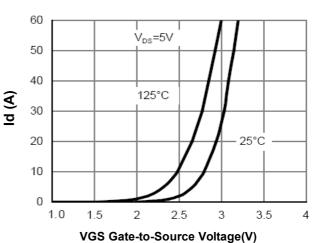
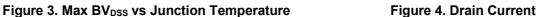
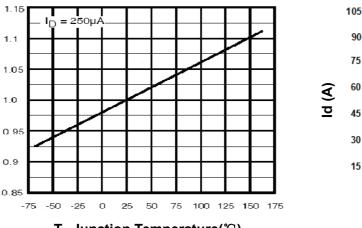




Figure 2. Transfer Characteristics

0

25

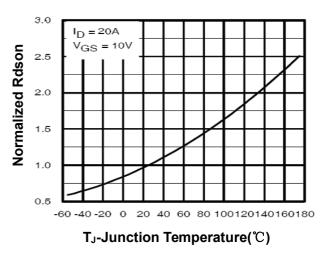
T_J-Junction Temperature(℃)

Figure 5. V_{GS(th)} vs Junction Temperature

Figure 6. R_{DS(ON)} vs Junction Temperature

75

T_J-Junction Temperature(℃)

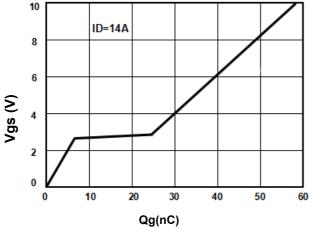

50

100

125

150

175



Normalized BV_{DSS}

Figure 7. Gate Charge Waveforms

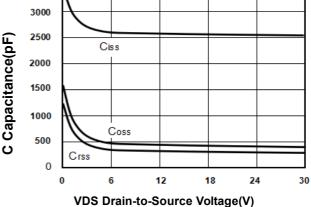


Figure 9. Body-Diode Characteristics

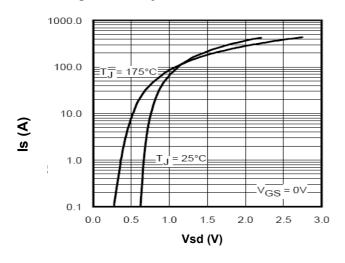
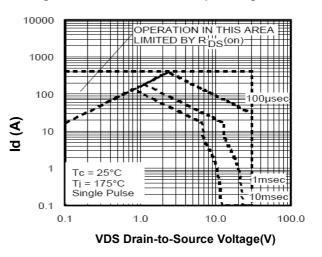



Figure 10. Maximum Safe Operating Area

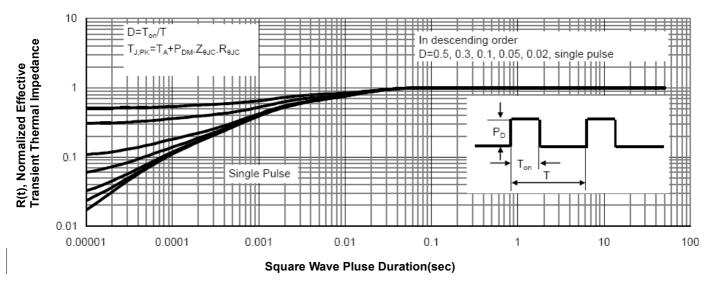
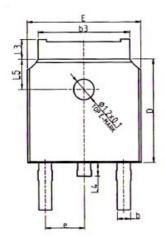
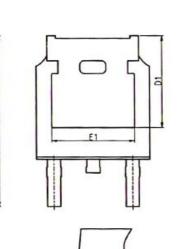
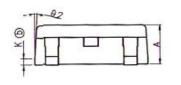
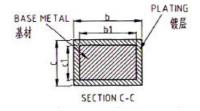



Figure 8. Capacitance


TO-252 Package Information


à


C

4 (

mm					
SYMBOL	MIN	NOM	MAX		
A	2.20	2.30	2.38		
Al	0.00	-	0.10		
A2	0.97	1.07	1.17		
b	0.72	0.78	0.85		
bl	0.71	0.76	0.81		
b3	5.23	5.33	5.46		
c	0.47	0.53	0.58		
cl	0.46	0.51	0.56		
D	6.00	6.10	6.20		
		5. 30REF	30REF		
E	6.50	6.60	6.70		
EI	4.70	4.83	4.92		
e	2. 286BSC				
н	9,90	10.10	10.30		
L	1.40	1.50	1.70		
LI		2. 90REF			
L2		0, 51BSC			
L3	0.90		1.25		
11	0.60	0.80	1.00		
15	1.70	1.80	1.90		
θ	0*	-	8*		
01	5*	7*	9.		
02	5*	7*	9*		
ĸ		0. 10REF			

NOTES

1.ALL DIMENSIONS REFER TO JEDEC STANDARD TO-252 AA, DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

(L1)

Disclaimers:

Reasunos Semiconductor Technology CO.,LTD(Reasunos)reserves the right to make changes without notice in order to improve reliability,function or design and to discontinue any product or service without notice .Customers should obtain the latest relevant information before orders and should verify that such information in current and complete.All products are sold subject to Reasunos's terms and conditions supplied at the time of order acknowledgement.

Reasunos Semiconductor Technology CO.,LTD warrants performance of its hardware products to the speciffications at the time of sale.Testing,reliability and quality control are used to the extene Reasunos deems necessary to support this warrantee. Except where agreed upon by contractual agreement,testing of all parameters of each product is not necessarily performed.

Reasunos Semiconductor Technology CO.,LTD does not assume any liability arising from the use of any product or circuit designs described herein.Customers are responsible for their products and applications using Reasunos's components.To minimize risk,customers must provide adequate design and operating safeguards.

Reasunos Semiconductor Technology CO.,LTD does not warrant or convey any license either expressed or implied under its patent rights,nor the rights of others.Reproduction of information in Reasunos's data sheeets or data books is permissible only if reproduction is without modification oralteration.Reproduction of this information with any alteration is an unfair and deceptive business practice. Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such altered documentation.

Resale of Reasunos's products with statements different from or beyond the parameters stated by Reasunos Semiconductor Technology CO.,LTD for that product or service voids all express or implied warrantees for the associated Reasunos's product or service and is unfair and deceptive business practice. Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such statements.

Life Support Policy:

Reasunos Semiconductor Technology CO.,LTD's Products are not authorized for use as critical components in life support devices or systems without the expressed written approval of Reasunos Semiconductor Technology CO.,LTD.

As used herein:

1.Life support devices or systems are devices or systems which:

a.are intended for surgical implant into the human body,

b.support or sustain life,

c.whose failuer to when properly used in accordance with instructions for used provided in the laeling,can be reasonably expected to result in significant injury to the user.

system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.